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We investigate the behavior of the thermal energy of a photon gas under the 
influence of gravity and observed from a moving frame, by considering 
Boltzmann's equation in a Riemannian manifold. For radiation measurements 
this approach has a local character, and it points out how the detected energy is 
affected by the motion of an observer in the presence of gravity. 

Lorentz transformations o f  temperature in special relativity (SR) have 
long been controversial. According to Einstein (1907), Planck (1908), Tolman 
(1934), Pauli (1958), and Von Lane (1961), among  others, a s low-moving 
temperature detector endowed with a velocity V should measure an "effective" 
temperature T = T0x/1 - V 2, where To is the temperature of  a thermal bath 
with respect to its own inertial frame (in this paper we adopt natural units, 
G = c = k = h = 1). Later, Ott (1963) and Arzelies (1965) reached the 
conclusion that T = Tolx/1 - V 2. The question o f  relativistic temperature 
transformations was an open problem up to the recent paper o f  Landsberg 
and Matsas (1996), who pointed out that there is no  Lorentz transformation 
for temperature. 3 Thus, we can infer that concerning the cosmic microwave 
background radiation (CMBR),  thermal energy is the quantity to be measured 
in a moving frame, instead o f  temperature. For  the energy spectrum of  the 
CMBR,  an important result is given by the Princeton experiment, which leads 

~Institute for Theoretical Physics, University of California, Santa Barbara, California 93106- 
4030. 

2Permanent address: Department of Physics-UFPR, P.O.B. 19081-81531/990, Curitiba PR, 
Brazil. 

3In reality, a directional Lorentz transformation of temperatures given in the form T(0) = 
~/- iT0(1 - [3 cos 0) was first proposed in SR by Henry et al. (I 968). It states that the measured 
"effective temperature" is not isotropic. However, here we assume a transformation of thermal 
energy, not temperature, and take gravity into account. 
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to the determination of the Earth velocity with respect to the CMBR (Janssen 
and Gulkis, 1991; Aldrovandi and Gariel, 1992). Moreover, the measurement 
of thermal energy on accelerated detectors has emerged as a subject of 
renewed investigation (Higuchi et  al., 1993), and an approach to establish such 
measurements in a Riemannian space-time, by employing the equivalence 
principle, was recently proposed by Komar (1995). Here we analyze the 
detection of the energy spectrum of a photon gas by a moving observer under 
the influence of gravity. The approach points out a gravitational shift on 
CMBR signals when measured on an Earth device in comparison with the 
SR prediction. 

We develop a relativistic framework in a Riemannian manifold, taking 
into account the coordinate time as an evolutionary parameter. For that, we 
assume the metric tensor in an orthogonal form, where the space-time line 
element corresponding to a moving particle is 

ds 2 = g~v dx  ~ d xv = goo dt  2 + gij dxi dxj (1) 

and whose signature is (+,  , , - ) .  In this paper Greek indices are space- 
time indices (0, 1, 2, 3), while Latin indices are space indices (1, 2, 3), and 
repeated indices are summed over their corresponding ranges. Assuming the 
coordinate time t as an evolutionary parameter, the coordinate velocity of 
the particle is v i = dxi/dt, which yields from (1) 

ds = (goo + gijvilpJ) 1t2 dt  (2) 

Hence, the relativistic action integral 

A = m f d s = f m ( g o o + g i j v i v J ) l / 2 d t = f L d t  (3) 

leads to the Lagrangian of the particle 

L = m(goo + gijvivJ) 112 (4) 

and to the particle's three-momentum components 

OL mvi 

Pi -- OV i ~/go0 -- V 2 (5) 

where v 2 = _ i , i l , , i ,  

Under a Legendre transformation of L we obtain for the Hamiltonian 

H = p i  v i  - L - goo m (6) 
g x ~ - -  V 2 
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and the above results allow us to define a relativistic four-momentum p~ = 
(H, Pi) in such a way that 

p~p~ = m 2 (7) 

Hence, the Hamiltonian of the particle can be written in terms ofp in the form 

H = x / ~ + P  2 (8) 

Finally, from (4) and (5) the Lagrange equations of motion yield 

dpi OL m 
- - . . (Oigoo -I- t~igjk vjl)k) (9) 

dt Ox i 2x/goo + gov ' v /  

If we assume an ideal gas as a collection of particles with the same rest 
mass m, and since the Hamiltonian ~ of the gas can be supposed as an additive 
conserved quantity, then we expect that at thermodynamic equilibrium the 
mean energy of this gas should be canonically distributed. Thus, for a gas 
at thermodynamic equilibrium in a Riemannian space-time, we can proceed 
to model the physics of our system. Hence, the Hamilton equations for the 
Hamiltonian of the gas are 

0 ~  d x  i 

Opl dt 

O~ dpi 
Ox i dt 

o~ 

gijpj 
gx/~ x/- ~ + p 2  

0(ln g 0o) PjPk Og jk 
2 Ox i 2 x / ~ v / - ~ - f  + p2 Ox i 

0o) 

01) 

d_f = {f, ~e}~.,, + aS (13) 
dt Ot 

where {f, ~}x,p is a Poisson bracket. 
Let us now analyze the behavior of the thermal energy of a photon gas 

under the influence of gravity as observed from a moving frame. We recall 

becomes 

d ~  ~ 0(ln g oo) PjPk Og jk 

Ot dt - 2 Ot 2 v / ~ x / ~  + p2 Ot (12) 

As usual, the distribution function is f(-xi,-Pi) = dN/dA  in the phase 
space of the gas, where dN is the number of particles inside the volume 
element dA. Then, from the left-hand sides of (10) and (11), the total time 

�9 , ..-# ...# . 

derivative of  f ( x i ,  Pi) i.e., 

dfldt = (Of/Ox i) dxi/dt + (Of/Op i) dpi/dt  + Of/Ot 
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that an expression for the energy of the CMBR was already derived (see, for 
instance, Morse, 1965) using the argument of adiabatic expansion of a photon 
gas. In an alternative way, the behavior of the thermal energy of the CMBR 
can be derived from the distribution function of the photon gas, with both 
the effects of the redshift of the spectrum and adiabatic expansion taken into 
account (Peebles, 1967). It is important to recall that in the standard big- 
bang model, the thermal spectrum of the CMBR comes from a Planck-type 
equilibrium before the recombination time, whose form is preserved through 
the subsequent expansion period and also in a short duration of the recombina- 
tion era, when photons interact only with the gravitational field. The fact that 
the spectrum is preserved means that a radiation energy ~- is fixed by gravity 
through a time scale parameter R (t). According to Einstein's equation in a 
matter-dominated homogeneous universe, the product R ( t ) ~  is constant, 
which ensures the preservation of the spectrum. Such a gravitational interac- 
tion, although small, is responsible for the equilibrium and it provides for 
the cosmological redshift. Its existence makes the CMBR to be a "confined" 
system, with a well-defined "effective" temperature, where gravity plays the 
role of a "thermal bath" for photons of the CMBR. The interaction energy 
between photons is supposed strong enough to stablish the equilibrium, but 
this energy is negligible for the time and dimensions considered in the 
detection of a sample. 

Here we consider the Boltzmann equation in the presence of gravity, 
by assuming the coordinate time as an evolutionary parameter. Recall that 
for a photon gas the function f(-xi,-Pi) can be defined at each point in the 
phase space of the gas, in an element of volume dA, in such a way that there 
are many photons in that volume element. Moreover, we also assume that 
the space-time structure of the universe is governed by the Robertson-Walker 
space-time metric 

R2(t) (dr 2 + r 2 d02 + r 2 sin 2 0d~b 2) (14) d s  2 = d t  2 - A2(r ) 

where A 2(r) = 1 + (ar2/4b 2) and a /b  = K is a constant denoted the curvature 
parameter. This yields for the Hamiltonian of the photon gas ~ = p, according 
to (8), when extended to a thermodynamic system. The above metric can be 
written in the form 

ds = F -1 dt (15) 

where F(x ~) = (1 - ~2)-u2, with ff~ = [R(t)lA(r)]dxildt, ~2  = _ff~i~i, 
~ i  = V i = dxi/dt and ~ i  = - [R2( t ) /A  2(r)]V i. If V denotes the coordinate 
velocity of an observer with respect to a comoving frame with the photon 
radiation, then the above result is analogous to the one given by SR. Clearly, 
absence of gravity means R( t )  = A (r) = 1, where the form (15) is reduced 
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t o  

ds = 7 - 1  dt, as predicted by SR, with ~/= (1 - V2) -uz  and Vii = - V  i. Such 
analogy yields Lorentz boosts which allow us to perform locally transforma- 
tions of coordinates under the influence of motion and gravity, by means of 
the Lorentz boost matrix 

[L]~  = 

F ~  1 1 + (F -- l ) ~ l ~  1 (F -- 1)~1~ 2 (F -- 1)~1~ 3 
~2 ~2 ~2 

( F -  1)~l~z ( F -  1)~2~2 ( I " -  1)~t~2~3 

( l - ' -  1)~1~ 3 ( I7-  1)~2~ 3 ( I"-  1)~3~ 3 
F~3 ~2 ~2 1 + ~z 

(16) 

and whose determinant is equal to + 1, leading thus to proper transformations. 
In this context, local transformations of the components of a four-vector A 
between two locally inertial frames are given by 

A ~ =  F ( A o - ~ ' A ) ,  A' = A  + ( F -  1) ~2 (~  �9 A ) ~  - F~Ao 

where the determinant of the Jacobian of such transformations is 

0tt o OA o ~ OA~ 

(17) 

In particular, if A~A ~ = const and if the space components Ai are 
independent, we obtain that OA~ i = -AilAo,  which allows us to see 
that J = A~IAo, according to the first of Eq. (17). Thus, from the 
transformation law dA~dA~dA~ = JdAldA2dA3; we conclude that dAldA2dA31 
A0 = dAldA2dAflA0. For the specific case of the relativistic four-momentum, 
which satisfies the condition (7), we obtain easily that the volume element 
in the phase space is invariant, under local transformations of coordinates, 
as pointed out in the literature (see, for instance, Misner, et al., 1973; and 
Chernikov, 1963). Indeed, we notice that a volume element d~ in the coordi- 
nate space and a three-surface element d9 ~ in the momentum space are now 
transformed respectively by d ~  = Fd~ and d ~  = F -l d@, analogously to 
what happens in SR, and in such a way that the volume element in the phase 
space dA = d W d ~  = d ~ d ~ ;  remains invariant under the influence of motion 
and gravity. As a consequence, owing to the definition of the distribution 

(18) 



2918 Stedile 

function, this means thatf(~i,  Pi) is also an invariant. This result is a reason- 
able requirement, because all observers must agree on the number of particles 
at a given location. 

Let us now assume the distribution function of a photon gas, written in 
terms of the Robertson-Walker metric (14). In this case it is convenient to 
use the new set of variables (p, q, u) for the three-momentum components 
of photons, which can be related to the old components (p r  p0, p*), taking 
into account that g~gpJ = - p  2. These relations are 

Rr sin 0 P ,  ~ sin q cos u R r ~_ ~ O J ,  _~  p 0 ~ sin q sin u, - -  = 
A p = A 

(19) 

where o~ = cos q. In terms of the new variables, the distribution function in 
a spherically symmetric case turns into f (r ,  ~ ,  co, t), and then its total time 
derivative becomes 

dfldt = (Of/Or) drldt + (OflOp) d~ld t  + (OflOoa) dtoldt + OflOt 

However, from (10), (12), and (19), and considering the metric (14), we 
obtain for photons 

( l dR sin2q dr dO) 
drdt _ rOAR " d~dt - P -R--~ + ~ r  --dt + c~ O sin2q c~ ~" 

(20) 

We now suppose that the distribution function of the CMBR is isotropic 
and homogeneous, and that its change due to collisions is negligible. In 
reality, the mean free path of photons of the CMBR can be assumed as 
infinite, for the purpose of thermal energy measurements, so there are neither 
internal interactions nor container border effects to be accounted for. This 
means that we can consider Of~Or = O flOw = 0, which yields f = f ( ~ ,  t). 
Moreover, since the present approach uses the time coordinate to label the 
variation of a hypersurface in the phase space, then the relativistic Liouville 
theorem in the presence of gravity is expressed by (Luke and Szamosi, 1970) 
dfldt = 0. With these assumptions, and taking into account that for photons 
p = ~ = v, we are led to 

of _ d ( l n R ) ~  (21) - -  _ 1 )  

Ot dt ov 

where v is the frequency of the CMBR. A general solution to (21) is 

f (v ,  t) = F[vR(O] (22) 

where F is an arbitrary function. The conclusion given above is all that we 
can assert from the Boltzmann equation for a photon gas in the presence of 
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gravity, and observed from a moving frame. However, we recall that classi- 
cally in any one direction of observation, the CMBR spectrum remains that 
of a black-body (see, for instance, Bracewell and Conklin, 1968) at the present 
age tp of  the universe. This result can be obtained if we choose a specific 
functional form for F [vR (t)] in order to agree with observations. Thus, we 
expect that the distribution function should be at the present time 

2 
f ( v ,  tp) = (23) 

exp[vR (tp)l~p] - 1 

where R (tp) = 1, and %p is the background thermal energy, which for practical 
purposes is assumed to correspond to the "effective temperature" T ~ 2.7 
K. At an arbitrary instant t, the distribution function should be, for the same 
frequency v, 

2 
f ( v ,  t) = (24) 

e x p [ v , ~ ( t ) ~ ( t ) ]  - 1 

where %(t) = R(t)%p expresses the familiar relation between the thermal 
energy of  the CMBR and the expansion (or contraction) of  the universe, as 
viewed by a moving observer immersed in a gravitational field. 

In order to point out the effect of gravity on an energy detector, let us 
now consider a comoving frame F0, at rest with respect to the CMBR, and 
an observer moving with velocity V < <  1 relative to F0, and placed at a 
distance r from the center of a source of gravity whose mass is M. For that 
we take into account Schwarzschild's metric in spherical coordinates 

(25) 

where "r is the proper time, rg = 2M is the gravitational radius of  M, and dl 
is the element of  spatial distance along the observer's geodesic line. If we 
assume the proper veloci~_ of the observer V = dlld'r, as defined in terms 
of its proper time "r = , / g~  t and at a given position r, then (25) becomes 

ds = F -~ dt (26) 

where we have defined the quantities F = (1 - N2)-~/2 and also ~2 = V2 
+ ~2 _ V292 with g = x/rJr. This procedure allows us to reduce as before 
the problem of a moving observer in the presence of gravity to its analog in 
SR, by replacing ~/and Vfor F and ~ ,  respectively. It is important to reinforce 
that in the present case the quantity N encloses the proper velocity of the 
observer and the local effect of gravity due to M. 
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We recall that the CMBR can be assumed as a "confined" system in 
the sense of Landsberg and Johns (1967). Either in the absence of gravity 
or if gravity is neglected, our thermodynamic system in its own rest frame 
Fo has energy %0, volume Y0, pressure P0, and enthalpy E0 = %o + P0Y0. 
However, when observed from a moving frame F which is moving with 
a "velocity parameter" ~ with respect to Fo, it will have an enthalpy 
E = % + PIP = FE0 = x / ~  + p2, wherep -- Eo~lx/1 - ~2 = E ~ .  Being 
a confined system, the enthalpy of the CMBR (instead of its energy) consti- 
tutes with its three-momentum a four-vector. For an observer with a locally 
constant "velocity parameter" (i.e., V constant and at a given distance r from 
the center of M), we can assume that the entropy of the CMBR is the same 
in both frames F0 and F, since the distribution function is invariant under 
the effects of motion and gravity. 

Let us now employ the preceding considerations for a background energy 
detector located on the Earth. First, we recall that the determination of the 
Earth velocity with respect the CMBR is based on SR arguments, which state 
that an earth-bound detector measures an angle-dependent thermal energy. 
However, according to the present approach, the energy as measured in a 
frame F comoving with the Earth should be (Henry et al., 1968) 

%o %R 
%(0) = F -~ - (27) 

1 - ~ c o s 0  1 - ~ c o s 0  

for a given distance of the Earth from the Sun, where 0 is the angle between 
the normal to the area of the detector and the direction of the Earth's "velocity 
parameter" ~ .  In the Earth frame, the radiation is specified by the photon 
distribution in a solid angle dO 

v 2 dv d ~  dIl 
daN = (28) 

exp(v /SE) -  1 

where daN denotes the number of photons detected in F within the volume 
d ~  and at the instant t. The experimental interest lies in the measurement 
of the intensity of the detected radiation, given in terms of the energy density 
U. Thus, if we neglect the Sun's radiation and the effects due to the Earth's 
atmosphere, we get from (27) and (28) 

d2U Cx 3 
- -  - ( 29 )  
dx dO exp[x(1 - ~ cos 0)] - 1 

where x = v/~R and C = 2(~R) 4. The above result may be written as 

{ ( e x ) [  ] } -1  
dEU - Cx3 1 + exp(-Nlx cos O ) -  1 (30) 
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and since for cosmic radiation detected on Earth, ~ x  < < 1, we then obtain 
from (30) 

d2U Cx 3 /1 + ~xeXcos 0'~ 
(31) 

dx d ~  e x -  1 e x -  1 

which states that the intensity of  the detected radiation is a maximum for 
0 = 0 and a minimum for 0 = "rr. I f  the detected signal is defined by 

S~ = \dx  de]max \ax  a ,]m, ,  (e x - 1) 2 

and if we assume that the Earth's velocity with respect to the CMBR is 
(Smoot et al., 1991) V ~- 0.001237 and also that the solar gravitational effect 
on an Earth detector is ~ ~ 0.000140, then we conclude that ~ ~ 1.006V. 
These values yield from (32) for the detected signal 

2.012CVx4e �9 
S ~ -  ( e X _  1) 2 (33) 

This result points out a shift of  about 0.6% in the value Sv = 2CVx4eX[ 
(e x - 1) 2 predicted by SR (Henry et al., 1968). In Fig. 1 we plot the curves 
of the detected signals in units o f x  = v/~R. Notice that the maximum detected 
signal is near the point x = 4 in both cases. It is important to mention that 

l o  I ' ' ' . . - - - : . .  ' . . . . .  l o  

, !  ' 
c 4 

0 2 4 6 8 10 
X 

Fig. 1. Detected signals Sa due to motion and gravity (dashed line) and Sv predicted by 
SR, both in units of CV versus x = v/~R. 
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in the present framework the effects due to the gravitational shift of frequency 
of the CMBR at the Earth's position and the nonconstancy of the velocity 
of light due to solar gravity can both be neglected, since they are lower than 
the uncertainty on the determination of the Earth's velocity with respect to 
the CMBR. Moreover, gravitational influences owing to other planets (even 
at planetary conjunction) and the effect of Earth's gravity can both be 
neglected. We recall that the velocity V is usually measured by fitting a 
dipole to the CMBR, with the galactic contribution being carefully subtracted. 
However, such a contribution to the background radiation cannot be ignored, 
but can be removed without introducing a systematic bias in a subsequent 
dipole fit to the CMBR. Although an accurate determination of V is still an 
experimental challenge, a further statement of % (0) as given by (27) might 
come from measurements of order V 2, which is not beyond possible improve- 
ments of a differential microwave detector. 
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